Parameter Learning in Probabilistic Databases: A Least Squares Approach

نویسندگان

  • Bernd Gutmann
  • Angelika Kimmig
  • Kristian Kersting
  • Luc De Raedt
چکیده

Probabilistic databases compute the success probabilities of queries. We introduce the problem of learning the parameters of the probabilistic database ProbLog. Given the observed success probabilities of a set of queries, we compute the probabilities attached to facts that have a low approximation error on the training data as well as on unseen examples. Assuming Gaussian error terms on the observed success probabilities, this naturally leads to a least squares optimization problem. Experiments on real world data show the usefulness and effectiveness of this least squares calibration of probabilistic databases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in ProbLog from Annotated Queries

We introduce the problem of learning the parameters of the probabilistic database ProbLog. Given the observed success probabilities of a set of queries, we compute the unobserved probabilities attached to facts that have a low approximation error on the training examples as well as on unseen examples. The objective function to be minimized is the squared-error between the measured and computed ...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers

Probabilistic classification and multi-task learning are two important branches of machine learning research. Probabilistic classification is useful when the ‘confidence’ of decision is necessary. On the other hand, the idea of multi-task learning is beneficial if multiple related learning tasks exist. So far, kernelized logistic regression has been a vital probabilistic classifier for the use ...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008